DWNet: Dual-Window Deep Neural Network for Time Series Prediction

Multivariate time series prediction is a very important task, which plays a huge role in climate, economy, and other fields. We usually use an Attention-based Encoder-Decoder network to deal with multivariate time series prediction because the attention mechanism makes it easier for the model to foc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1)
Hauptverfasser: Fan, Jin, Huang, Yipan, Zhang, Ke, Wang, Sen, Chen, Jinhua, Chen, Baiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multivariate time series prediction is a very important task, which plays a huge role in climate, economy, and other fields. We usually use an Attention-based Encoder-Decoder network to deal with multivariate time series prediction because the attention mechanism makes it easier for the model to focus on the really important attributes. However, the Encoder-Decoder network has the problem that the longer the length of the sequence is, the worse the prediction accuracy is, which means that the Encoder-Decoder network cannot process long series and therefore cannot obtain detailed historical information. In this paper, we propose a dual-window deep neural network (DWNet) to predict time series. The dual-window mechanism allows the model to mine multigranularity dependencies of time series, such as local information obtained from a short sequence and global information obtained from a long sequence. Our model outperforms nine baseline methods in four different datasets.
ISSN:1076-2787
1099-0526
DOI:10.1155/2021/1125630