A Multi-Objective Genetic Algorithm-Based Predictive Model and Parameter Optimization for Forming Quality of SLM Aluminum Anodes

Aluminum–air batteries are characterized as “green energy for the 21st century” due to their clear advantages in terms of high current discharge, high specific energy, low cost, and easy-to-obtain electrode materials. This study develops the SLM aluminum anode quality prediction model and evaluates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2024-07, Vol.14 (7), p.608
Hauptverfasser: Xia, Qingfeng, Li, Yin, Sun, Ning, Song, Zhiqiang, Zhu, Kui, Guan, Jiahui, Li, Peng, Tang, Sida, Han, Jitai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aluminum–air batteries are characterized as “green energy for the 21st century” due to their clear advantages in terms of high current discharge, high specific energy, low cost, and easy-to-obtain electrode materials. This study develops the SLM aluminum anode quality prediction model and evaluates its learning and training results using the BP neural network architecture. By altering the network topology of the SLM aluminum anode quality prediction model, we create a process parameter backpropagation model that takes advantage of the extremely adaptable capabilities of artificial neural networks. The quick and exact selection of process parameters meets the goals of density, self-corrosion current, and anode usage, hence improving the forming quality and processing efficiency of SLM aluminum anodes. The experimental results show that the process parameter backpropagation model’s parameter configurations match to the real densities and self-corrosion currents, which are somewhat higher than the specified target values. The maximum error rate for the aluminum anode forming quality prediction model is 8.23%. Furthermore, the actual anode utilization rate is somewhat lower than the projected target value, indicating that the backpropagation model can satisfy actual production needs.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst14070608