A New Sparse Collaborative Low-Rank Prior Knowledge Representation for Thick Cloud Removal in Remote Sensing Images
Efficiently removing clouds from remote sensing imagery presents a significant challenge, yet it is crucial for a variety of applications. This paper introduces a novel sparse function, named the tri-fiber-wise sparse function, meticulously engineered for the targeted tasks of cloud detection and re...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-05, Vol.16 (9), p.1518 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficiently removing clouds from remote sensing imagery presents a significant challenge, yet it is crucial for a variety of applications. This paper introduces a novel sparse function, named the tri-fiber-wise sparse function, meticulously engineered for the targeted tasks of cloud detection and removal. This function is adept at capturing cloud characteristics across three dimensions, leveraging the sparsity of mode-1, -2, and -3 fibers simultaneously to achieve precise cloud detection. By incorporating the concept of tensor multi-rank, which describes the global correlation, we have developed a tri-fiber-wise sparse-based model that excels in both detecting and eliminating clouds from images. Furthermore, to ensure that the cloud-free information accurately matches the corresponding areas in the observed data, we have enhanced our model with an extended box-constraint strategy. The experiments showcase the notable success of the proposed method in cloud removal. This highlights its potential and utility in enhancing the accuracy of remote sensing imagery. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16091518 |