Deep Neural Networks for the Classification of Pure and Impure Strawberry Purees
In this paper, a comparative study of the effectiveness of deep neural networks (DNNs) in the classification of pure and impure purees is conducted. Three different types of deep neural networks (DNNs)-the Gated Recurrent Unit (GRU), the Long Short Term Memory (LSTM), and the temporal convolutional...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2020-02, Vol.20 (4), p.1223 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a comparative study of the effectiveness of deep neural networks (DNNs) in the classification of pure and impure purees is conducted. Three different types of deep neural networks (DNNs)-the Gated Recurrent Unit (GRU), the Long Short Term Memory (LSTM), and the temporal convolutional network (TCN)-are employed for the detection of adulteration of strawberry purees. The Strawberry dataset, a time series spectroscopy dataset from the UCR time series classification repository, is utilized to evaluate the performance of different DNNs. Experimental results demonstrate that the TCN is able to obtain a higher classification accuracy than the GRU and LSTM. Moreover, the TCN achieves a new state-of-the-art classification accuracy on the Strawberry dataset. These results indicates the great potential of using the TCN for the detection of adulteration of fruit purees in the future. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20041223 |