Techno-economic, energy, and exergy analyses of invasive weed gasification for hydrogen enriched producer gas production
This research work deals with the examination of the techno-economic, exergy, and energy analyses of biomass gasification of the invasive weed Parthenium hysterophorus (PHP) using Steam - Carbon dioxide (CO2) as a gasifying agent with the support of simulation modeling for sustainable energy convers...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-03, Vol.10 (6), p.e27673-e27673, Article e27673 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research work deals with the examination of the techno-economic, exergy, and energy analyses of biomass gasification of the invasive weed Parthenium hysterophorus (PHP) using Steam - Carbon dioxide (CO2) as a gasifying agent with the support of simulation modeling for sustainable energy conversion process. The aim of this work is to simulate the gasification process through consideration of the impacts of various operating factors on gasification. This study attains the gradual increase in hydrogen (H2) concentration from 51% to 63% along with the rise in carbon monoxide (CO) from 14.5% to 19% using Aspen Plus simulation. CO2 falls concurrently from 24% to 13.5%. The findings demonstrate significant advancements over earlier studies in terms of both gas composition and overall system performance. A computational model has been developed for the estimation of energy performance indicators such as total energy input, and energy consumed per mass of biomass gasified, which are used in the determination of the system's energy efficiency. The exergy analysis of the system is performed to assess the system's total losses in terms of efficiency gathered from the system's exergy ratios. The economic analysis evaluates the system's economies of scale by gas production at ₹.15/kg and long-term sustainability. The proposed system has been found with the potential to produce a high yield of alternative energy from PHP with increased economic efficiency and lower environmental impact. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e27673 |