Kernel density estimation and its application

Kernel density estimation is a technique for estimation of probability density function that is a must-have enabling the user to better analyse the studied probability distribution than when using a traditional histogram. Unlike the histogram, the kernel technique produces smooth estimate of the pdf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Węglarczyk, Stanisław
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kernel density estimation is a technique for estimation of probability density function that is a must-have enabling the user to better analyse the studied probability distribution than when using a traditional histogram. Unlike the histogram, the kernel technique produces smooth estimate of the pdf, uses all sample points' locations and more convincingly suggest multimodality. In its two-dimensional applications, kernel estimation is even better as the 2D histogram requires additionally to define the orientation of 2D bins. Two concepts play fundamental role in kernel estimation: kernel function shape and coefficient of smoothness, of which the latter is crucial to the method. Several real-life examples, both for univariate and bivariate applications, are shown.
ISSN:2271-2097
2431-7578
2271-2097
DOI:10.1051/itmconf/20182300037