Painlevé Analysis, Soliton Molecule, and Lump Solution of the Higher-Order Boussinesq Equation

The Painlevé integrability of the higher-order Boussinesq equation is proved by using the standard Weiss-Tabor-Carnevale (WTC) method. The multisoliton solutions of the higher-order Boussinesq equation are obtained by introducing dependent variable transformation. The soliton molecule and asymmetric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Mathematical Physics 2021-02, Vol.2021, p.1-6
1. Verfasser: Ren, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Painlevé integrability of the higher-order Boussinesq equation is proved by using the standard Weiss-Tabor-Carnevale (WTC) method. The multisoliton solutions of the higher-order Boussinesq equation are obtained by introducing dependent variable transformation. The soliton molecule and asymmetric soliton of the higher-order Boussinesq equation can be constructed by the velocity resonance mechanism. Lump solution can be derived by solving the bilinear form of the higher-order Boussinesq equation. By some detailed calculations, the lump wave of the higher-order Boussinesq equation is just the bright form. These types of the localized excitations are exhibited by selecting suitable parameters.
ISSN:1687-9120
1687-9139
DOI:10.1155/2021/6687632