A Multiscale Method for Infrared Ship Detection Based on Morphological Reconstruction and Two-Branch Compensation Strategy

Infrared ship target detection is crucial technology in marine scenarios. Ship targets vary in scale throughout navigation because the distance between the ship and the infrared camera is constantly changing. Furthermore, complex backgrounds, such as sea clutter, can cause significant interference d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-08, Vol.23 (16), p.7309
Hauptverfasser: Chen, Xintao, Qiu, Changzhen, Zhang, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Infrared ship target detection is crucial technology in marine scenarios. Ship targets vary in scale throughout navigation because the distance between the ship and the infrared camera is constantly changing. Furthermore, complex backgrounds, such as sea clutter, can cause significant interference during detection tasks. In this paper, multiscale morphological reconstruction-based saliency mapping, combined with a two-branch compensation strategy (MMRSM-TBC) algorithm, is proposed for the detection of ship targets of various sizes and against complex backgrounds. First, a multiscale morphological reconstruction method is proposed to enhance the ship targets in the infrared image and suppress any irrelevant background. Then, by introducing a structure tensor with two feature-based filter templates, we utilize the contour information of the ship targets and further improve their intensities in the saliency map. After that, a two-branch compensation strategy is proposed, due to the uneven distribution of image grayscale. Finally, the target is extracted using an adaptive threshold. The experimental results fully show that our proposed algorithm achieves strong performance in the detection of different-sized ship targets and has a higher accuracy than other existing methods.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23167309