Comparative Assessment of SDSM, IDW and LARS-WG Models for Simulation and Downscaling of Temperature and Precipitation
Introduction: According to the fifth International Panel on Climate Change (IPCC) report, increasing concentrations of CO2 and other greenhouse gases resulting from anthropogenic activities have led to fundamental changes on global climate over the course of the last century. The future global clima...
Gespeichert in:
Veröffentlicht in: | Majallah-i āb va khāk 2017-01, Vol.29 (5), p.1376-1390 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | per |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction: According to the fifth International Panel on Climate Change (IPCC) report, increasing concentrations of CO2 and other greenhouse gases resulting from anthropogenic activities have led to fundamental changes on global climate over the course of the last century. The future global climate will be characterized by uncertainty and change, and this will affect water resources and agricultural activities worldwide. To estimate future climate change resulting from the continuous increase of greenhouse gas concentration in the atmosphere, general circulation models (GCMs) are used. Resolution of the output of the GCM models is one of the problems of these models. Using downscaling tools to convert global large-scale data to climate data for the study area is essential. These techniques are used to convert the coarse spatial resolution of the GCMs output into a fine resolution, which may involve the generation of station data of a specific area using GCMs climatic output variables. The objectives of this study are, therefore, to investigate and evaluate the statistical downscaling approaches. Materials and Methods: Different models and methods have been developed which the uncertainty and validation of results in each of them in the study area should be investigated to achieve the more real results in the future. In the present study, the performance of SDSM, IDW and LARS-WG models for downscaling of the temperature and precipitation data of Pars Abad synoptic station were compared and investigated. IDW technique is based on the functions of the inverse distances in which the weights are characterized by the inverse of the distance and normalized, so their aggregate equivalents one. SDSM is categorized as a hybrid model, which utilized a linear regression method and a stochastic weather generator. The GCM’s outputs (named as predictors) are used to a linearly condition local-scale weather generator parameters at single stations. LARS-WG is a stochastic weather generator and it is widely used for the climate change assessment. This model uses the observed daily weather data, to compute a set of parameters for probability distributions of weather variables, which are used to generate synthetic weather time series of arbitrary length by randomly selecting values from the appropriate distributions. In this study, data from the Pars Abad meteorological station, which was used as the data for the baseline period, was also used to predict climate variables. |
---|---|
ISSN: | 2008-4757 2423-396X |
DOI: | 10.22067/jsw.v29i5.32589 |