Water Supply: RO Desalination Versus Conventional Water Treatment

Water scarcity threatens the health and development of countries worldwide due to the rapid expansion of population and climate change, pushing the government to find more innovative and sustainable ways to address water stress. Governments have adopted reverse Osmosis (RO) seawater desalination tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Han, Jiayuan, Liu, Ying, Li, Yining, Wang, Wenmin, You, Lexin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water scarcity threatens the health and development of countries worldwide due to the rapid expansion of population and climate change, pushing the government to find more innovative and sustainable ways to address water stress. Governments have adopted reverse Osmosis (RO) seawater desalination technology for its cheap raw water intake and stability. However, its environmental and financial sustainability remains disputable. In this study, three metrics, carbon footprint, cost, and waste discharge, are defined and analyzed to identify which water supply technology has greater prospects. Accounting for a full water treatment process from raw water intake to transportation and distribution, the RO desalination plant outruns traditional water treatment facilities due to less carbon emission, limited operation cost and maintenance, and less hazardous waste discharge. The qualitative and quantitative analysis of environmental and financial sustainability of existing solutions to the water supply may provide a more comprehensive understanding and further supports policy making.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202130801011