The Use of Machine Learning and Satellite Imagery to Detect Roman Fortified Sites: The Case Study of Blad Talh (Tunisia Section)
This study focuses on an ad hoc machine-learning method for locating archaeological sites in arid environments. Pleiades (P1B) were uploaded to the cloud asset of the Google Earth Engine (GEE) environment because they are not yet available on the platform. The average of the SAR data was combined wi...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-02, Vol.13 (4), p.2613 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study focuses on an ad hoc machine-learning method for locating archaeological sites in arid environments. Pleiades (P1B) were uploaded to the cloud asset of the Google Earth Engine (GEE) environment because they are not yet available on the platform. The average of the SAR data was combined with the P1B image in the selected study area called Blad Talh at Gafsa, which is located in southern Tunisia. This pre-desert region has long been investigated as an important area of Roman civilization (106 BCE). The results show an accurate probability map with an overall accuracy and Kappa coefficient of 0.93 and 0.91, respectively, when validated with field survey data. The results of this research demonstrate, from the perspective of archaeologists, the capability of satellite data and machine learning to discover buried archaeological sites. This work shows that the area presents more archaeological sites, which has major implications for understanding the archaeological significance of the region. Remote sensing combined with machine learning algorithms provides an effective way to augment archaeological surveys and detect new cultural deposits. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13042613 |