Characteristics, Health Risk Assessment, and Transfer Model of Heavy Metals in the Soil-Food Chain in Cultivated Land in Karst
Heavy metal(loid) contamination of farmland is a crucial agri−environmental problem that threatens food safety and human health. In this study, we examined the contamination levels of heavy metals (As, Pb, Cd, Hg, Cr) in farmland and foods (rice, maize, and cabbage) in the core of Asia’s largest kar...
Gespeichert in:
Veröffentlicht in: | Foods 2022-09, Vol.11 (18), p.2802 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heavy metal(loid) contamination of farmland is a crucial agri−environmental problem that threatens food safety and human health. In this study, we examined the contamination levels of heavy metals (As, Pb, Cd, Hg, Cr) in farmland and foods (rice, maize, and cabbage) in the core of Asia’s largest karst region and assessed the potential health risks of consumption of these three foods. In addition, we developed a predictive transfer model of heavy metals in the soil−food chain through multiple regression equations. The results reveal that the soil heavy metals in the study area showed high accumulation characteristics, and the average concentration exceeded the national background value by 1.6−130 times, among which Cd pollution was the most serious. The order of contamination of the three soils in the study area was cabbage land > maize land > rice land. The order of potential risk of toxic elements in all three soils was Cd > Hg > As > Pb > Cr. The results of the risk assessment of agricultural consumption indicated a high carcinogenic and noncarcinogenic risk for the local population. The top contributor to carcinogenic risk was Cr, followed by As. Cd is the major noncarcinogenic contributor in maize and cabbage, and the noncarcinogenic contribution in rice is mainly caused by As. The risk was higher in children than in adults and was the highest for rice consumption. In addition, the predictive transfer model showed that the Cd levels in the three foods showed sufficient predictability and reasonable simulations of Cd concentrations in rice, maize, and cabbage throughout the study area. It could allow decision-making on the need for remediation strategies to reduce the risk of metal contamination of agricultural land in potentially high−risk areas of karst. |
---|---|
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods11182802 |