Cross-Talk between Amyloid, Tau Protein and Free Radicals in Post-Ischemic Brain Neurodegeneration in the Form of Alzheimer's Disease Proteinopathy

Recent years have seen remarkable progress in research into free radicals oxidative stress, particularly in the context of post-ischemic recirculation brain injury. Oxidative stress in post-ischemic tissues violates the integrity of the genome, causing DNA damage, death of neuronal, glial and vascul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2022-01, Vol.11 (1), p.146
Hauptverfasser: Pluta, Ryszard, Kiś, Jacek, Januszewski, Sławomir, Jabłoński, Mirosław, Czuczwar, Stanisław J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent years have seen remarkable progress in research into free radicals oxidative stress, particularly in the context of post-ischemic recirculation brain injury. Oxidative stress in post-ischemic tissues violates the integrity of the genome, causing DNA damage, death of neuronal, glial and vascular cells, and impaired neurological outcome after brain ischemia. Indeed, it is now known that DNA damage and repair play a key role in post-stroke white and gray matter remodeling, and restoring the integrity of the blood-brain barrier. This review will present one of the newly characterized mechanisms that emerged with genomic and proteomic development that led to brain ischemia to a new level of post-ischemic neuropathological mechanisms, such as the presence of amyloid plaques and the development of neurofibrillary tangles, which further exacerbate oxidative stress. Finally, we hypothesize that modified amyloid and the tau protein, along with the oxidative stress generated, are new key elements in the vicious circle important in the development of post-ischemic neurodegeneration in a type of Alzheimer's disease proteinopathy.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox11010146