Characterization of a high temperature ceramics produced via two-step additive manufacturing
Selective laser sintering (SLS) is a prospective technology to manufacture ceramic of complex geometry. However it is limited by the poor sinterability of ceramics and steady cracks formation. The paper highlights a new strategy to fabricate ceramics produced via two-step procedure: metal-ceramic gr...
Gespeichert in:
Veröffentlicht in: | Open ceramics 2021-09, Vol.7, p.100165, Article 100165 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Selective laser sintering (SLS) is a prospective technology to manufacture ceramic of complex geometry. However it is limited by the poor sinterability of ceramics and steady cracks formation. The paper highlights a new strategy to fabricate ceramics produced via two-step procedure: metal-ceramic green body manufacturing by SLS with further conversion into the Al2O3-based ceramics by high-temperature oxidation. Via shrinkage test it was shown that the developed production process could be treated as non-shrinkable since the deviations in the samples linear dimensions are less than 0.3–0.4%. According to XRD results produced material is suitable for a long-term exploitation (>1000 h) at temperatures below 1250 °C and for a short-time (1–2 h) usage at 1300 °C. The thermal expansion of the material is close to that typical for alumina-based ceramics, it is constant up to 1000 °C with a following slight decrease up to 1400 °C due to microamounts of mullite formation.
[Display omitted] |
---|---|
ISSN: | 2666-5395 2666-5395 |
DOI: | 10.1016/j.oceram.2021.100165 |