Interpretable many-class decoding for MEG

Multivariate pattern analysis (MVPA) of Magnetoencephalography (MEG) and Electroencephalography (EEG) data is a valuable tool for understanding how the brain represents and discriminates between different stimuli. Identifying the spatial and temporal signatures of stimuli is typically a crucial outp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2023-11, Vol.282, p.120396-120396, Article 120396
Hauptverfasser: Csaky, Richard, van Es, Mats W.J., Jones, Oiwi Parker, Woolrich, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multivariate pattern analysis (MVPA) of Magnetoencephalography (MEG) and Electroencephalography (EEG) data is a valuable tool for understanding how the brain represents and discriminates between different stimuli. Identifying the spatial and temporal signatures of stimuli is typically a crucial output of these analyses. Such analyses are mainly performed using linear, pairwise, sliding window decoding models. These allow for relative ease of interpretation, e.g. by estimating a time-course of decoding accuracy, but have limited decoding performance. On the other hand, full epoch multiclass decoding models, commonly used for brain–computer interface (BCI) applications, can provide better decoding performance. However interpretation methods for such models have been designed with a low number of classes in mind. In this paper, we propose an approach that combines a multiclass, full epoch decoding model with supervised dimensionality reduction, while still being able to reveal the contributions of spatiotemporal and spectral features using permutation feature importance. Crucially, we introduce a way of doing supervised dimensionality reduction of input features within a neural network optimised for the classification task, improving performance substantially. We demonstrate the approach on 3 different many-class task-MEG datasets using image presentations. Our results demonstrate that this approach consistently achieves higher accuracy than the peak accuracy of a sliding window decoder while estimating the relevant spatiotemporal features in the MEG signal. •Full-epoch decoding models achieve higher accuracy than sliding window models.•Temporal, spatial, and spectral patterns are extracted from full-epoch models.•A single multiclass model can be used for pairwise decoding without retraining.•Learning the dimensionality reduction of features for decoding improves on PCA.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2023.120396