Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning

Reminiscence is the act of thinking or talking about personal experiences that occurred in the past. It is a central task of old age that is essential for healthy aging, and it serves multiple functions, such as decision-making and introspection, transmitting life lessons, and bonding with others. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical Internet research 2020-09, Vol.22 (9), p.e19133-e19133
Hauptverfasser: Ferrario, Andrea, Demiray, Burcu, Yordanova, Kristina, Luo, Minxia, Martin, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reminiscence is the act of thinking or talking about personal experiences that occurred in the past. It is a central task of old age that is essential for healthy aging, and it serves multiple functions, such as decision-making and introspection, transmitting life lessons, and bonding with others. The study of social reminiscence behavior in everyday life can be used to generate data and detect reminiscence from general conversations. The aims of this original paper are to (1) preprocess coded transcripts of conversations in German of older adults with natural language processing (NLP), and (2) implement and evaluate learning strategies using different NLP features and machine learning algorithms to detect reminiscence in a corpus of transcripts. The methods in this study comprise (1) collecting and coding of transcripts of older adults' conversations in German, (2) preprocessing transcripts to generate NLP features (bag-of-words models, part-of-speech tags, pretrained German word embeddings), and (3) training machine learning models to detect reminiscence using random forests, support vector machines, and adaptive and extreme gradient boosting algorithms. The data set comprises 2214 transcripts, including 109 transcripts with reminiscence. Due to class imbalance in the data, we introduced three learning strategies: (1) class-weighted learning, (2) a meta-classifier consisting of a voting ensemble, and (3) data augmentation with the Synthetic Minority Oversampling Technique (SMOTE) algorithm. For each learning strategy, we performed cross-validation on a random sample of the training data set of transcripts. We computed the area under the curve (AUC), the average precision (AP), precision, recall, as well as F1 score and specificity measures on the test data, for all combinations of NLP features, algorithms, and learning strategies. Class-weighted support vector machines on bag-of-words features outperformed all other classifiers (AUC=0.91, AP=0.56, precision=0.5, recall=0.45, F1=0.48, specificity=0.98), followed by support vector machines on SMOTE-augmented data and word embeddings features (AUC=0.89, AP=0.54, precision=0.35, recall=0.59, F1=0.44, specificity=0.94). For the meta-classifier strategy, adaptive and extreme gradient boosting algorithms trained on word embeddings and bag-of-words outperformed all other classifiers and NLP features; however, the performance of the meta-classifier learning strategy was lower compared to other strategies, with hi
ISSN:1438-8871
1439-4456
1438-8871
DOI:10.2196/19133