Novel low-shrinkage-stress bioactive nanocomposite with anti-biofilm and remineralization capabilities to inhibit caries
A common reason for dental composite restoration failure is recurrent caries at the margins. Our objectives were to: (1) develop a novel low-shrinkage-stress, antibacterial and remineralizing resin composite; (2) evaluate the effects of dimethylaminohexadecyl methacrylate (DMAHDM) on mechanical prop...
Gespeichert in:
Veröffentlicht in: | Journal of dental sciences 2022-04, Vol.17 (2), p.811-821 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A common reason for dental composite restoration failure is recurrent caries at the margins. Our objectives were to: (1) develop a novel low-shrinkage-stress, antibacterial and remineralizing resin composite; (2) evaluate the effects of dimethylaminohexadecyl methacrylate (DMAHDM) on mechanical properties, biofilm inhibition, calcium (Ca) and phosphate (P) ion release, degree of conversion, and shrinkage stress on the new low-shrinkage-stress resin composite for the first time.
The resin consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) with high resistance to salivary hydrolytic degradation. Composites were made with 0%–8% of DMAHDM for antibacterial activity, and 20% of nanoparticles of amorphous calcium phosphate (NACP) for remineralization. Mechanical properties and Streptococcus mutans biofilm growth on composites were assessed. Ca and P ion releases, degree of conversion and shrinkage stress were evaluated.
Adding 2–5% DMAHDM and 20% NACP into the low-shrinkage-stress composite did not compromise the mechanical properties (p > 0.05). The incorporation of DMAHDM greatly reduced S. mutans biofilm colony-forming units by 2–5 log and lactic acid production by 7 folds, compared to a commercial composite (p |
---|---|
ISSN: | 1991-7902 2213-8862 |
DOI: | 10.1016/j.jds.2021.09.032 |