A novel biodegradable polymer scaffold for in vitro growth of corneal epithelial cells

The shortage of donor corneal tissue worldwide has led to extensive research for alternate corneal equivalents utilizing tissue engineering methods. We conducted experiments using Poly D, L lactic acid polymer along with a copolymer (Eudragit) in varying concentrations to create a biodegradable scaf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of ophthalmology 2022-10, Vol.70 (10), p.3693-3697
Hauptverfasser: Bhardwaj, Kanika, Sridhar, Uma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The shortage of donor corneal tissue worldwide has led to extensive research for alternate corneal equivalents utilizing tissue engineering methods. We conducted experiments using Poly D, L lactic acid polymer along with a copolymer (Eudragit) in varying concentrations to create a biodegradable scaffold suitable for in vitro growth of corneal epithelial stem cells. It was found that stable, spherical, and porous microparticles can be prepared by combining PDLLA and Eudragit RL100 polymers in the ratio of 90:10 and 70:30. The microparticles can then be fused to form scaffold membranes with porous architecture and good water retention capacity at room temperature using methanol, which can withstand handling during transplantation procedures. The scaffolds made using a 70:30 ratio were found to be suitable for the promotion of growth of laboratory corneal epithelial stem cell lines (SIRC cell lines). This innovation can pave way for further developments in corneal stem cell research and growth, thus providing for viable laboratory-derived corneal substitutes.
ISSN:0301-4738
1998-3689
DOI:10.4103/ijo.IJO_210_22