Inverse design of grating couplers using the policy gradient method from reinforcement learning

We present a proof-of-concept technique for the inverse design of electromagnetic devices motivated by the policy gradient method in reinforcement learning, named PHORCED ( otonic ptimization using EINFORCE riteria for nhanced esign). This technique uses a probabilistic generative neural network int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics (Berlin, Germany) Germany), 2021-11, Vol.10 (15), p.3843-3856
Hauptverfasser: Hooten, Sean, Beausoleil, Raymond G., Van Vaerenbergh, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a proof-of-concept technique for the inverse design of electromagnetic devices motivated by the policy gradient method in reinforcement learning, named PHORCED ( otonic ptimization using EINFORCE riteria for nhanced esign). This technique uses a probabilistic generative neural network interfaced with an electromagnetic solver to assist in the design of photonic devices, such as grating couplers. We show that PHORCED obtains better performing grating coupler designs than local gradient-based inverse design via the adjoint method, while potentially providing faster convergence over competing state-of-the-art generative methods. As a further example of the benefits of this method, we implement transfer learning with PHORCED, demonstrating that a neural network trained to optimize 8° grating couplers can then be re-trained on grating couplers with alternate scattering angles while requiring >10× fewer simulations than control cases.
ISSN:2192-8614
2192-8606
2192-8614
DOI:10.1515/nanoph-2021-0332