Functional Connectivity Pattern Analysis Underlying Neural Oscillation Synchronization during Deception

To characterize system cognitive processes during deception, event-related coherence was computed to investigate the functional connectivity among brain regions underlying neural oscillation synchronization. In this study, 15 participants were randomly assigned to honesty or deception groups and wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural plasticity 2019-01, Vol.2019 (2019), p.1-10
Hauptverfasser: Liu, Peng, Ji, Shumei, Shen, Hongkui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To characterize system cognitive processes during deception, event-related coherence was computed to investigate the functional connectivity among brain regions underlying neural oscillation synchronization. In this study, 15 participants were randomly assigned to honesty or deception groups and were instructed to tell the truth or lie when facing certain stimuli. Meanwhile, event-related potential signals were recorded using a 64-channel electroencephalography cap. Event-related coherence was computed separately in four frequency bands (delta (1-3.5 Hz), theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 HZ)) for the long-range intrahemispheric electrode pairs (F3P3, F4P4, F3T7, F4T8, F3O1, and F4O2). The results indicated that deceptive responses elicited greater connectivities in the frontoparietal and frontotemporal networks than in the frontooccipital network. Furthermore, the deception group displayed lower values of coherence in the frontoparietal electrode pairs in the alpha and beta bands than the honesty group. In particular, increased coherence in the delta and theta bands on specific left frontoparietal electrode pairs was observed. Additionally, the deception group exhibited higher values of coherence in the delta band and lower values of coherence in the beta band on the frontotemporal electrode pairs than did the honesty group. These data indicated that the active cognitive processes during deception include changes in ensemble activities between the frontal and parietal/temporal regions.
ISSN:2090-5904
1687-5443
DOI:10.1155/2019/2684821