A Survey on Vehicular Traffic Flow Anomaly Detection Using Machine Learning

Vehicular traffic flow anomaly detection is crucial for traffic management, public safety, and transportation efficiency. It assists experts in responding promptly to abnormal traffic conditions and making decisions to improve the traffic flow. This survey paper offers an overview of the application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ITM web of conferences 2024, Vol.63, p.1023
Hauptverfasser: Chew, Jackel Vui Lung, Asli, Mohammad Fadhli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vehicular traffic flow anomaly detection is crucial for traffic management, public safety, and transportation efficiency. It assists experts in responding promptly to abnormal traffic conditions and making decisions to improve the traffic flow. This survey paper offers an overview of the application of machine learning to detect anomalies in the traffic flow. Through an extensive review of the literature from the Scopus database, this paper explores the technical aspects of traffic flow anomaly detection using machine learning, including data sources, data processing approaches, machine learning algorithms, and evaluation metrics. Additionally, the paper highlights the emerging research opportunities for researchers in enhancing traffic flow anomaly detection using machine learning.
ISSN:2271-2097
2431-7578
2271-2097
DOI:10.1051/itmconf/20246301023