Electrospun of polymer/bioceramic nanocomposite as a new soft tissue for biomedical applications

Iranian Gum Tragacanth (IGT) is among the most natural polymers which has interesting properties such as nontoxic nature, biodegradability and high resistance to bacterial attacks making it applicable for tissue scaffolds, protective clothing, and wound healing. In the current work, polyvinyl alcoho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Asian Ceramic Societies 2015-12, Vol.3 (4), p.417-425
Hauptverfasser: Heydary, Hamid Amiri, Karamian, Ebrahim, Poorazizi, Elahe, Heydaripour, Jalil, Khandan, Amirsalar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iranian Gum Tragacanth (IGT) is among the most natural polymers which has interesting properties such as nontoxic nature, biodegradability and high resistance to bacterial attacks making it applicable for tissue scaffolds, protective clothing, and wound healing. In the current work, polyvinyl alcohol (PVA)/IGT nanocomposite fibre is prepared by using the electrospinning (ELS) technique in an aqueous solution with different volume ratios of 60/40, 70/30, 80/20, and 90/10. To enhance the chemical and mechanical stability of the produced samples, different amounts of nanoclay powder (1% and 3%) are added also to the solution. The blended nanofibres are characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and bioactivity evaluation in phosphate buffered saline (PBS) and simulated body fluid (SBF) solutions. The FTIR analysis indicated that PVA and IGT may have H+ bonding interactions. The results revealed that with a higher amount of IGT, a superior degradation as well as a higher chemical and biological stability could be obtained in the nanobiocomposite blend fibres. Furthermore, the blend nanofibre samples of 80/20 and 3% nanoclay powder exhibit a significant improvement during evaluation of its properties.
ISSN:2187-0764
2187-0764
DOI:10.1016/j.jascer.2015.09.003