On Homogeneous Combinations of Linear Recurrence Sequences
Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2=Fn+1+Fn, for n≥0, where F0=0 and F1=1. There are several interesting identities involving this sequence such as Fn2+Fn+12=F2n+1, for all n≥0. In 2012, Chaves, Marques and Togbé proved that if (Gm)m is a linear recurrence sequence (under weak assump...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2020-12, Vol.8 (12), p.2152 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2=Fn+1+Fn, for n≥0, where F0=0 and F1=1. There are several interesting identities involving this sequence such as Fn2+Fn+12=F2n+1, for all n≥0. In 2012, Chaves, Marques and Togbé proved that if (Gm)m is a linear recurrence sequence (under weak assumptions) and Gn+1s+⋯+Gn+ℓs∈(Gm)m, for infinitely many positive integers n, then s is bounded by an effectively computable constant depending only on ł and the parameters of (Gm)m. In this paper, we shall prove that if P(x1,…,xℓ) is an integer homogeneous s-degree polynomial (under weak hypotheses) and if P(Gn+1,…,Gn+ℓ)∈(Gm)m for infinitely many positive integers n, then s is bounded by an effectively computable constant depending only on ℓ, the parameters of (Gm)m and the coefficients of P. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math8122152 |