Cloud-probability-based estimation of black-sky surface albedo from AVHRR data

This paper describes a new method for cloud-correcting observations of black-sky surface albedo derived using the Advanced Very High Resolution Radiometer (AVHRR). Cloud cover constitutes a major challenge for surface albedo estimation using AVHRR data for all possible conditions of cloud fraction a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric measurement techniques 2022-02, Vol.15 (4), p.879-893
Hauptverfasser: Manninen, Terhikki, Jääskeläinen, Emmihenna, Siljamo, Niilo, Riihelä, Aku, Karlsson, Karl-Göran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a new method for cloud-correcting observations of black-sky surface albedo derived using the Advanced Very High Resolution Radiometer (AVHRR). Cloud cover constitutes a major challenge for surface albedo estimation using AVHRR data for all possible conditions of cloud fraction and cloud type with any land cover type and solar zenith angle. This study shows how the new cloud probability (CP) data to be provided as part of edition A3 of the CLARA (CM SAF cLoud, Albedo and surface Radiation dataset from AVHRR data) record from the Satellite Application Facility on Climate Monitoring (CM SAF) project of EUMETSAT can be used instead of traditional binary cloud masking to derive cloud-free monthly mean surface albedo estimates. Cloudy broadband albedo distributions were simulated first for theoretical cloud distributions and then using global cloud probability (CP) data for 1 month. A weighted mean approach based on the CP values was shown to produce very-high-accuracy black-sky surface albedo estimates for simulated data. The 90 % quantile for the error was 1.1 % (in absolute albedo percentage) and that for the relative error was 2.2 %. AVHRR-based and in situ albedo distributions were in line with each other and the monthly mean values were also consistent. Comparison with binary cloud masking indicated that the developed method improves cloud contamination removal.
ISSN:1867-8548
1867-1381
1867-8548
DOI:10.5194/amt-15-879-2022