Singularly perturbed quasilinear Choquard equations with nonlinearity satisfying Berestycki–Lions assumptions
In the present paper, we consider the following singularly perturbed problem: { − ε 2 Δ u + V ( x ) u − ε 2 Δ ( u 2 ) u = ε − α ( I α ∗ G ( u ) ) g ( u ) , x ∈ R N ; u ∈ H 1 ( R N ) , where ε > 0 is a parameter, N ≥ 3 , α ∈ ( 0 , N ) , G ( t ) = ∫ 0 t g ( s ) d s , I α : R N → R is the Riesz pote...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2021-10, Vol.2021 (1), p.1-18, Article 86 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we consider the following singularly perturbed problem:
{
−
ε
2
Δ
u
+
V
(
x
)
u
−
ε
2
Δ
(
u
2
)
u
=
ε
−
α
(
I
α
∗
G
(
u
)
)
g
(
u
)
,
x
∈
R
N
;
u
∈
H
1
(
R
N
)
,
where
ε
>
0
is a parameter,
N
≥
3
,
α
∈
(
0
,
N
)
,
G
(
t
)
=
∫
0
t
g
(
s
)
d
s
,
I
α
:
R
N
→
R
is the Riesz potential, and
V
∈
C
(
R
N
,
R
)
with
0
<
min
x
∈
R
N
V
(
x
)
<
lim
|
y
|
→
∞
V
(
y
)
. Under the general Berestycki–Lions assumptions on
g
, we prove that there exists a constant
ε
0
>
0
determined by
V
and
g
such that for
ε
∈
(
0
,
ε
0
]
the above problem admits a semiclassical ground state solution
u
ˆ
ε
with exponential decay at infinity. We also study the asymptotic behavior of
{
u
ˆ
ε
}
as
ε
→
0
. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-021-01563-0 |