Semi-supervised learning through hierarchical clustering for interactive aerospace image analysis

A new semi-supervised classification algorithm based on the non-parametric clustering algorithm HCA is proposed. The algorithm obtains hierarchical segmentation result where additional classes that are not represented in the training samples can be found. High performance of the algorithm allows usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rylov, Sergey
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new semi-supervised classification algorithm based on the non-parametric clustering algorithm HCA is proposed. The algorithm obtains hierarchical segmentation result where additional classes that are not represented in the training samples can be found. High performance of the algorithm allows using it in interactive mode. Experimental studies confirm that the proposed algorithm provides aerospace image classification in conditions of limited number of training samples.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/20197501009