A dual-stage low-power converter driving for piezoelectric actuator applied in micro robot
In this article, a dual-stage converter driving for a piezoelectric actuator based on flyback circuit was designed and implemented, which could be applied in a micro robot. A low-voltage direct current could be converted to a high-voltage alternating current through flyback circuit and direct curren...
Gespeichert in:
Veröffentlicht in: | International journal of advanced robotic systems 2019-01, Vol.16 (1), p.1705-1724 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, a dual-stage converter driving for a piezoelectric actuator based on flyback circuit was designed and implemented, which could be applied in a micro robot. A low-voltage direct current could be converted to a high-voltage alternating current through flyback circuit and direct current/alternating current circuit in low-power condition. In the direct current/direct current stage, the charging and discharging process was realized to generate a high voltage bias from a low voltage directly supplied by battery. Then, the high voltage was converted into alternating waveform by an energy recovery circuit in direct current/alternating current stage. Experiments were conducted to verify the ability of the proposed converter to drive a 100-V-input piezoelectric bimorph actuator using a prototype 108 mg (excluding printed circuit board mass), 169 (13 × 13) mm2, and 500-mW converter. According to the experimental results, this converter could be used for driving piezoelectric actuator applied in micro robot. |
---|---|
ISSN: | 1729-8806 1729-8814 |
DOI: | 10.1177/1729881419826849 |