Random bit generation based on a self-chaotic microlaser with enhanced chaotic bandwidth

Chaotic semiconductor lasers have been widely investigated for high-speed random bit generation, which is applied for the generation of cryptographic keys for classical and quantum cryptography systems. Here, we propose and demonstrate a self-chaotic microlaser with enhanced chaotic bandwidth for hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics (Berlin, Germany) Germany), 2023-10, Vol.12 (21), p.4109-4116
Hauptverfasser: Li, Jian-Cheng, Xiao, Jin-Long, Yang, Yue-De, Chen, You-Ling, Huang, Yong-Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chaotic semiconductor lasers have been widely investigated for high-speed random bit generation, which is applied for the generation of cryptographic keys for classical and quantum cryptography systems. Here, we propose and demonstrate a self-chaotic microlaser with enhanced chaotic bandwidth for high-speed random bit generation. By designing tri-mode interaction in a deformed square microcavity laser, we realize a self-chaotic laser caused by two-mode internal interaction, and achieve an enhanced chaotic standard bandwidth due to the photon–photon resonance effect by introducing the third mode. Moreover, 500 Gb/s random bit generation is realized and the randomness is verified by the NIST SP 800-22 statistics test. Our demonstration promises the applications of microlasers in secure communication, chaos radar, and optical reservoir computing, and also provides a platform for the investigations of multimode nonlinear laser dynamics.
ISSN:2192-8614
2192-8606
2192-8614
DOI:10.1515/nanoph-2023-0549