Degradation Kinetics and Mechanism of Polychloromethanes Reduction at Co-MoS2/Graphite Felt Electrode
In this study, the electrochemical dechlorination of different polychloromethanes (CCl4, CHCl3, and CH2Cl2) on a Co-MoS2 graphite felt cathode was investigated. The Co-MoS2 electrocatalyst was prepared hydrothermally on a graphite felt support. The prepared catalyst’s characterization revealed the f...
Gespeichert in:
Veröffentlicht in: | Catalysts 2021-08, Vol.11 (8), p.929 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the electrochemical dechlorination of different polychloromethanes (CCl4, CHCl3, and CH2Cl2) on a Co-MoS2 graphite felt cathode was investigated. The Co-MoS2 electrocatalyst was prepared hydrothermally on a graphite felt support. The prepared catalyst’s characterization revealed the formation of hybridized CoSx and MoS2 nanosheets deposited on the pore structures of graphite. The influencing factor for the electro-dechlorination parameters such as applied current density, pH, and sample concentration on the dechlorination rate was optimized. A significant capacitive reduction current density peak of approximately 1 mA/cm2 was noted for CCl4 at a potential of −0.3 V (vs. AgCl). The dechlorination mechanism was attributed to the stepwise hydrogenolysis mechanism that involves the organochlorides bond cleavage by H* insertion. It was noted that the Co-MoS2 graphite felt electrode exhibited excellent catalytic activity toward the reduction of each of the chlorinated compounds with high selectivity toward the higher-order organochloride. Moreover, the dechlorination rates for each of the compounds were suited to the first-order kinetic model, and the estimated apparent rate constants showed the dechlorination in the following sequence CH2Cl2 (k3 = 9.1 × 10−5 s−1) < CHCl3 (k2 = 1.5 × 10−3 s−1) < CCl4 (k1 = 2.8 × 10−3 s−1). |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal11080929 |