Detection and characterization of colorectal cancer by autofluorescence lifetime imaging on surgical specimens

Colorectal cancer (CRC) ranks among the most prevalent malignancies worldwide, driving a quest for comprehensive characterization methods. We report a characterization of the ex vivo autofluorescence lifetime fingerprint of colorectal tissues obtained from 73 patients that underwent surgical resecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-10, Vol.14 (1), p.24575-17, Article 24575
Hauptverfasser: Herrando, Alberto Ignacio, Fernandez, Laura M., Azevedo, José, Vieira, Pedro, Domingos, Hugo, Galzerano, Antonio, Shcheslavskiy, Vladislav, Heald, Richard J., Parvaiz, Amjad, da Silva, Pedro Garcia, Castillo-Martin, Mireia, Lagarto, João L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colorectal cancer (CRC) ranks among the most prevalent malignancies worldwide, driving a quest for comprehensive characterization methods. We report a characterization of the ex vivo autofluorescence lifetime fingerprint of colorectal tissues obtained from 73 patients that underwent surgical resection. We specifically target the autofluorescence characteristics of collagens, reduced nicotine adenine (phosphate) dinucleotide (NAD(P)H), and flavins employing a fiber-based dual excitation (375 nm and 445 nm) optical imaging system. Autofluorescence-derived parameters obtained from normal tissues, adenomatous lesions, and adenocarcinomas were analyzed considering the underlying clinicopathological features. Our results indicate that differences between tissues are primarily driven by collagen and flavins autofluorescence parameters. We also report changes in the autofluorescence parameters associated with NAD(P)H that we tentatively attribute to intratumoral heterogeneity, potentially associated to the presence of distinct metabolic subpopulations. Changes in autofluorescence signatures of malignant tumors were also observed with lymphatic and venous invasion, differentiation grade, and microsatellite instability. Finally, we characterized the impact of radiative treatment in the autofluorescence fingerprints of rectal tissues and observed a generalized increase in the mean lifetime of radiated adenocarcinomas, which is suggestive of altered metabolism and structural remodeling. Overall, our preliminary findings indicate that multiparametric autofluorescence lifetime measurements have the potential to significantly enhance clinical decision-making in CRC, spanning from initial diagnosis to ongoing management. We believe that our results will provide a foundational framework for future investigations to further understand and combat CRC exploiting autofluorescence measurements.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-74224-8