A semi-implicit approach for the modeling of wells with inflow control completions

In the last two decades, new technologies have been introduced to equip wells with intelligent completions such as Inflow Control Device (ICD) or Inflow Control Valve (ICV) in order to optimize the oil recovery by reducing the undesirable production of gas and water. To optimally define the location...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oil & gas science and technology 2020, Vol.75, p.39
Hauptverfasser: Flauraud, Eric, Ding, Didier Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the last two decades, new technologies have been introduced to equip wells with intelligent completions such as Inflow Control Device (ICD) or Inflow Control Valve (ICV) in order to optimize the oil recovery by reducing the undesirable production of gas and water. To optimally define the locations of the packers and the characteristics of the valves, efficient reservoir simulation models are required. This paper is aimed at presenting the specific developments introduced in a multipurpose industrial reservoir simulator to simulate such wells equipped with intelligent completions taking into account the pressure drop and multiphase flow. An explicit coupling or decoupling of a reservoir model and a well flow model with intelligent completion makes usually unstable and non-convergent results, and a fully implicit coupling is CPU time consuming and difficult to be implemented. This paper presents therefore a semi-implicit approach, which links on one side to the reservoir simulation model and on the other side to the well flow model, to integrate ICD and ICV.
ISSN:1294-4475
1953-8189
2804-7699
DOI:10.2516/ogst/2020034