Treatment of polypropylene microfibers by atmospheric and low-pressure plasma – application to a reinforced cement composite containing recycled concrete

The effect of atmospheric and low-pressure plasma modification on polypropylene (PP) microfibers was examined. Mechanical changes on the microfiber surfaces were observed using scanning electron microscopy (SEM). Next, wettability was measured using the packed-cell method. The fibers were applied in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Polytechnica CTU proceedings 2023-07, Vol.40, p.22-26
Hauptverfasser: Ďureje, Jakub, Prošek, Zdeněk, Trejbal, Jan, Potocký, Štěpán, Hlůžek, Radim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of atmospheric and low-pressure plasma modification on polypropylene (PP) microfibers was examined. Mechanical changes on the microfiber surfaces were observed using scanning electron microscopy (SEM). Next, wettability was measured using the packed-cell method. The fibers were applied into a cement matrix containing micro-milled recycled concrete. Test specimens were made and then the dynamic modulus of elasticity was continuously measured. After 28 days were made in the test specimens central notches to a depth of 14 mm. Finally, bending tests were performed. From the results, the fracture energy of the composite material was calculated. It was proven that low-pressure plasma modification as well as atmospheric plasma modification increases the wettability of PP fibers with water. Furthermore, it was found that samples containing plasma-modified microfibers have a higher fracture energy compared to the same samples with fibers without plasma modification. Conversely, plasma modification had no effect on the dynamic modulus of elasticity.
ISSN:2336-5382
2336-5382
DOI:10.14311/APP.2023.40.0022