An Assessment of Land Use Land Cover Using Machine Learning Technique
This research paper presents a comprehensive assessment of the built-up area in Mysuru City over the decade spanning from 2010 to 2020, employing advanced geospatial techniques. The study aims to analyze the spatiotemporal patterns of urban expansion, land-use dynamics, and associated factors influe...
Gespeichert in:
Veröffentlicht in: | Nature environment and pollution technology 2024-12, Vol.23 (4), p.2211-2219 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research paper presents a comprehensive assessment of the built-up area in Mysuru City over the decade spanning from 2010 to 2020, employing advanced geospatial techniques. The study aims to analyze the spatiotemporal patterns of urban expansion, land-use dynamics, and associated factors influencing the city’s built environment. Remote sensing imagery, Geographic Information System (GIS) tools, and machine learning algorithms are leveraged to process and interpret satellite data for accurate land-cover classification. The methodology involves the acquisition and preprocessing of multi-temporal satellite imagery to delineate and map the built-up areas at different time intervals. Land-use change detection techniques are employed to identify and quantify alterations in urban morphology over the specified period. Additionally, socio-economic and environmental variables are integrated into the analysis to discern the drivers of urban growth. The outcomes of this research contribute valuable insights into urbanization dynamics and land-use planning strategies, facilitating informed decision-making for sustainable urban development. |
---|---|
ISSN: | 2395-3454 0972-6268 2395-3454 |
DOI: | 10.46488/NEPT.2024.v23i04.025 |