Aproximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem

In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilbert space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică 2012-05, Vol.20 (1), p.5-14
Hauptverfasser: Afuwape, A. U., Udo-utun, Xavier, Balla, M. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilbert space L2[0,∞)). However applying Osilike-Akuchuf[10] theorem and recent results (in Hilbert space) of Igbokwe and Udoutun[8] we formulate conditions for finding approximate cycles of the second kind (in the Hilbert space W02,2[0,∞)) to this problem given in the form x'" + ax" + g(x') + φ(x)= 0
ISSN:1844-0835
1224-1784
1844-0835
DOI:10.2478/v10309-012-0001-z