Aproximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem
In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilbert space...
Gespeichert in:
Veröffentlicht in: | Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică 2012-05, Vol.20 (1), p.5-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilbert space L2[0,∞)). However applying Osilike-Akuchuf[10] theorem and recent results (in Hilbert space) of Igbokwe and Udoutun[8] we formulate conditions for finding approximate cycles of the second kind (in the Hilbert space W02,2[0,∞)) to this problem given in the form x'" + ax" + g(x') + φ(x)= 0 |
---|---|
ISSN: | 1844-0835 1224-1784 1844-0835 |
DOI: | 10.2478/v10309-012-0001-z |