Bone Integration of Femtosecond Laser-Treated Dental Implants with Nanostructured Surfaces: A Controlled Animal Study
Background: The purpose of this study is to compare bone union and soft-tissue healing in titanium implants with sandblasted, large-grit, acid-etched surfaces (SLA group) and femtosecond laser-treated surfaces (FEMTO group) in a rabbit model. Methods: Implants were inserted into rabbit tibiae, and i...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2024-12, Vol.14 (23), p.10913 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: The purpose of this study is to compare bone union and soft-tissue healing in titanium implants with sandblasted, large-grit, acid-etched surfaces (SLA group) and femtosecond laser-treated surfaces (FEMTO group) in a rabbit model. Methods: Implants were inserted into rabbit tibiae, and implant stability, soft-tissue healing, and microscopic analyses (micro-CT and biopsy) were conducted. All animals maintained normal weight and health post-surgery. Results: Hemostasis was achieved at the laser incision site on the surgery day, but healing was slower compared to conventional methods. Micro-CT showed no significant differences in new bone formation or inflammatory tissue infiltration between groups. Tissue biopsy revealed slightly higher bone-implant contact in the FEMTO group compared to the SLA group, though not statistically significant. Conclusion: These findings suggest that femtosecond laser surface treatment may provide bone union comparable to or better than SLA treatment, though laser-assisted soft-tissue incisions heal more slowly. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app142310913 |