Optimization of Battery Energy Storage System Capacity for Wind Farm with Considering Auxiliary Services Compensation

An optimal sizing model of the battery energy storage system (BESS) for large-scale wind farm adapting to the scheduling plan is proposed in this paper. Based on the analysis of the variability and uncertainty of wind output, the cost of auxiliary services of systems that are eased by BESS is quanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2018-10, Vol.8 (10), p.1957
Hauptverfasser: Jiang, Xin, Nan, Guoliang, Liu, Hao, Guo, Zhimin, Zeng, Qingshan, Jin, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An optimal sizing model of the battery energy storage system (BESS) for large-scale wind farm adapting to the scheduling plan is proposed in this paper. Based on the analysis of the variability and uncertainty of wind output, the cost of auxiliary services of systems that are eased by BESS is quantized and the constraints of BESS accounting for the effect of wind power on system dispatching are proposed. Aiming to maximum the benefits of wind-storage union system, an optimal capacity model considering BESS investment costs, wind curtailment saving, and auxiliary services compensation is established. What’s more, the effect of irregular charge/discharge process on the life cycle of BESS is considered into the optimal model by introducing an equivalent loss of the cycle life. Finally, based on the typical data of a systems, results show that auxiliary services compensation can encourage wind farm configuration BESS effectively. Various sensitivity analyses are performed to assess the effect of the auxiliary services compensation, on-grid price of wind power, investment cost of BESS, cycle life of BESS, and wind uncertainty reserve level of BESS on this optimal capacity.
ISSN:2076-3417
2076-3417
DOI:10.3390/app8101957