Cell wall and cytoskeletal contributions in single cell biomechanics of Nicotiana tabacum

Studies on the mechanics of plant cells usually focus on understanding the effects of turgor pressure and properties of the cell wall (CW). While the functional roles of the underlying cytoskeleton have been studied, the extent to which it contributes to the mechanical properties of cells is not elu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative plant biology 2022, Vol.3, p.e1-e1, Article e1
Hauptverfasser: Ginsberg, Leah, McDonald, Robin, Lin, Qinchen, Hendrickx, Rodinde, Spigolon, Giada, Ravichandran, Guruswami, Daraio, Chiara, Roumeli, Eleftheria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies on the mechanics of plant cells usually focus on understanding the effects of turgor pressure and properties of the cell wall (CW). While the functional roles of the underlying cytoskeleton have been studied, the extent to which it contributes to the mechanical properties of cells is not elucidated. Here, we study the contributions of the CW, microtubules (MTs) and actin filaments (AFs), in the mechanical properties of cells. We use a multiscale biomechanical assay comprised of atomic force microscopy and micro-indentation in solutions that (i) remove MTs and AFs and (ii) alter osmotic pressures in the cells. To compare measurements obtained by the two mechanical tests, we develop two generative statistical models to describe the cell's behaviour using one or both datasets. Our results illustrate that MTs and AFs contribute significantly to cell stiffness and dissipated energy, while confirming the dominant role of turgor pressure.
ISSN:2632-8828
2632-8828
DOI:10.1017/qpb.2021.15