Evaluation and analysis of teaching quality of university teachers using machine learning algorithms

In order to better improve the teaching quality of university teachers, an effective method should be adopted for evaluation and analysis. This work studied the machine learning algorithms and selected the support vector machine (SVM) algorithm to evaluate teaching quality. First, the principles of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent systems 2023-02, Vol.32 (1), p.355-60
1. Verfasser: Zhong, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to better improve the teaching quality of university teachers, an effective method should be adopted for evaluation and analysis. This work studied the machine learning algorithms and selected the support vector machine (SVM) algorithm to evaluate teaching quality. First, the principles of selecting evaluation indexes were briefly introduced, and 16 evaluation indexes were selected from different aspects. Then, the SVM algorithm was used for evaluation. A genetic algorithm (GA)-SVM algorithm was designed and experimentally analyzed. It was found that the training time and testing time of the GA-SVM algorithm were 23.21 and 7.25 ms, both of which were shorter than the SVM algorithm. In the evaluation of teaching quality, the evaluation value of the GA-SVM algorithm was closer to the actual value, indicating that the evaluation result was more accurate. The average accuracy of the GA-SVM algorithm was 11.64% higher than that of the SVM algorithm (98.36 vs 86.72%). The experimental results verify that the GA-SVM algorithm can have a good application in evaluating and analyzing teaching quality in universities with its advantages in efficiency and accuracy.
ISSN:2191-026X
0334-1860
2191-026X
DOI:10.1515/jisys-2022-0204