New Perspectives for LVL Manufacturing from Wood of Heterogeneous Quality—Part 2: Modeling and Manufacturing of Variable Stiffness Beams

This paper presents a new strategy in the use of wood of heterogeneous quality for composing LVL products. The idea is to consider veneers representative of the resource variability and retain local stiffness information to control panel manufacturing fully. The placement of veneers is also no longe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2021-09, Vol.12 (9), p.1275
Hauptverfasser: Duriot, Robin, Pot, Guillaume, Girardon, Stéphane, Denaud, Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new strategy in the use of wood of heterogeneous quality for composing LVL products. The idea is to consider veneers representative of the resource variability and retain local stiffness information to control panel manufacturing fully. The placement of veneers is also no longer random as in the first part of this group of papers but optimized for the quality of veneers according to the requirement of bending stresses along the beam. In a four-point bending test arrangement, this means the high-quality veneer is concentrated in the center of the beam in the area between the loading points where the bending moments are the most important, and the low quality is located at the extremities. This initiates the creation of variable stiffness beams. This is driven by an algorithm developed and tested on representative veneer samples from the resource. Four LVL panels were manufactured by positioning the veneers in the same positions as in an analytical calculation model, which allowed the calculation of beam mechanical properties in four-point bending. The proposed optimization of LVL manufacturing from variable quality veneers should help for more efficient usage of forest resources. This optimization strategy showed notable gains for modeled and experimental mechanical properties, whether in terms of stiffness or strength. The analytical calculation of the local modulus of elasticity from modelized beams was satisfactory compared to the tests of the manufactured beams test results, allowing the reliability of the model for this property to be confirmed.
ISSN:1999-4907
1999-4907
DOI:10.3390/f12091275