Reduced graphene aerogels as energy efficient selective oil sorbents

Graphene aerogels are widely used in the oil–water system as they possess high internal surface area and super-oleophilic properties. However, they tend to absorb water along with oil, and to overcome this problem; surface coatings are generally employed using expensive fluoro-silane compounds. It l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy reports 2022-11, Vol.8, p.117-123
Hauptverfasser: Saleem, Junaid, Baig, Moghal Zubair Khalid, Shahid, Usman Bin, Mansour, Said, McKay, Gordon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene aerogels are widely used in the oil–water system as they possess high internal surface area and super-oleophilic properties. However, they tend to absorb water along with oil, and to overcome this problem; surface coatings are generally employed using expensive fluoro-silane compounds. It leads to an increase in production costs and environmental concerns. Herein, we report super-hydrophobic 3D graphene aerogels as selective oil sorbent for oil–water​ separation. The reduction of oxygen-containing functional groups on the surface of graphene aerogels has been studied and characterized with FTIR. The thermal treatment of up to 700 °C was carried out using an in-house flow system. The gases used to reduce graphene oxide aerogel are H2 and N2 with an optimized ratio of 5:95. The presence of H2 significantly decreased the oxygen-containing functional groups in graphene aerogel. The increase in the C/O ratio results in higher uptake capacity due to higher surface area and pore volume. The thermal reduction yields a C/O ratio of 24:1, slightly higher than most reported values.
ISSN:2352-4847
2352-4847
DOI:10.1016/j.egyr.2022.10.076