Enhancing GNSS Deformation Monitoring Forecasting with a Combined VMD-CNN-LSTM Deep Learning Model

Hydraulic infrastructures are susceptible to deformation over time, necessitating reliable monitoring and prediction methods. In this study, we address this challenge by proposing a novel approach based on the combination of Variational Mode Decomposition (VMD), Convolutional Neural Network (CNN), a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-05, Vol.16 (10), p.1767
Hauptverfasser: Xie, Yilin, Meng, Xiaolin, Wang, Jun, Li, Haiyang, Lu, Xun, Ding, Jinfeng, Jia, Yushan, Yang, Yin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydraulic infrastructures are susceptible to deformation over time, necessitating reliable monitoring and prediction methods. In this study, we address this challenge by proposing a novel approach based on the combination of Variational Mode Decomposition (VMD), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) methods for Global Navigation Satellite Systems (GNSS) deformation monitoring and prediction modeling. The VMD method is utilized to decompose the complex deformation signals into intrinsic mode functions, which are then fed into a CNN method for feature extraction. The extracted features are input into an LSTM method to capture temporal dependencies and make predictions. The experimental results demonstrate that the proposed VMD-CNN-LSTM method exhibits an improvement by about 75%. This research contributes to the advancement of deformation monitoring technologies in water conservancy engineering, offering a promising solution for proactive maintenance and risk mitigation strategies.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16101767