Molecular Docking and Fragment-Based QSAR Modeling for In Silico Screening of Approved Drugs and Candidate Compounds Against COVID-19
Background: Coronavirus disease 2019 (COVID-19) as a serious global health crisis leads to high mortality and morbidity. However, currently, there are no effective vaccines and treatments for COVID-19. Main protease (Mpro) and angiotensin-converting enzyme 2 (ACE2) are the best therapeutic targets o...
Gespeichert in:
Veröffentlicht in: | Avicenna journal of medical biochemistry 2020-12, Vol.8 (2), p.83-88 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Coronavirus disease 2019 (COVID-19) as a serious global health crisis leads to high mortality and morbidity. However, currently, there are no effective vaccines and treatments for COVID-19. Main protease (Mpro) and angiotensin-converting enzyme 2 (ACE2) are the best therapeutic targets of COVID-19. Objectives: The main purpose of this study is to investigate the most appropriate drug and candidate compound for proper interaction with Mpro and ACE2 to inhibit the activity of COVID-19. Methods: In this study, repurposing of approved drugs and screening of candidate compounds using molecular docking and fragment-based QSAR method were performed to discover the potential inhibitors of Mpro and ACE2. QSAR and docking calculations were performed based on the prediction of the inhibitory activities of 5-hydroxy indanone derivatives. Based on the results, an optimal structure was proposed to inhibit the activity of COVID-19. Results: Among 2629 DrugBank approved drugs, 118 were selected considering the LibDock score and absolute energy for possible drug-Mpro interactions. Furthermore, the top 40 drugs were selected based on screening the results for possible drug- Mpro interactions with AutoDock Vina. Conclusion: Finally, evaluation of the top 40 selected drugs for possible drug-ACE2 interactions with AutoDock Vina indicated that deslanoside (DB01078) can interact effectively with both Mpro and ACE2. However, prior to conducting clinical trials, further experimental validation is needed. |
---|---|
ISSN: | 2345-4113 2345-4113 |
DOI: | 10.34172/ajmb.2020.12 |