Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Godunova–Levin and (h1, h2)-Convex Functions

This note generalizes several existing results related to Hermite–Hadamard inequality using h-Godunova–Levin and (h1,h2)-convex functions using a fractional integral operator associated with the Caputo–Fabrizio fractional derivative. This study uses a non-singular kernel and constructs some new theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2023-09, Vol.7 (9), p.687
Hauptverfasser: Afzal, Waqar, Abbas, Mujahid, Hamali, Waleed, Mahnashi, Ali M., Sen, M. De la
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This note generalizes several existing results related to Hermite–Hadamard inequality using h-Godunova–Levin and (h1,h2)-convex functions using a fractional integral operator associated with the Caputo–Fabrizio fractional derivative. This study uses a non-singular kernel and constructs some new theorems associated with fractional order integrals. Furthermore, we demonstrate that the obtained results are a generalization of the existing ones. To demonstrate the correctness of these results, we developed a few interesting non-trivial examples. Finally, we discuss some applications of our findings associated with special means.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract7090687