An ultrafast-response and flexible humidity sensor for human respiration monitoring and noncontact safety warning
The humidity sensor is an essential sensing node in medical diagnosis and industrial processing control. To date, most of the reported relative humidity sensors have a long response time of several seconds or even hundreds of seconds, which would limit their real application for certain critical are...
Gespeichert in:
Veröffentlicht in: | Microsystems & nanoengineering 2021-11, Vol.7 (1), p.99-99, Article 99 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The humidity sensor is an essential sensing node in medical diagnosis and industrial processing control. To date, most of the reported relative humidity sensors have a long response time of several seconds or even hundreds of seconds, which would limit their real application for certain critical areas with fast-varying signals. In this paper, we propose a flexible and low-cost humidity sensor using vertically aligned carbon nanotubes (VACNTs) as electrodes, a PDMS-Parylene C double layer as the flexible substrate, and graphene oxide as the sensing material. The humidity sensor has an ultrafast response of ~20 ms, which is more than two orders faster than most of the previously reported flexible humidity sensors. Moreover, the sensor has a high sensitivity (16.7 pF/% RH), low hysteresis ( |
---|---|
ISSN: | 2055-7434 2096-1030 2055-7434 |
DOI: | 10.1038/s41378-021-00324-4 |