Analysis of aerosol–cloud interactions and their implications for precipitation formation using aircraft observations over the United Arab Emirates

Aerosol and cloud microphysical measurements were collected by a research aircraft during August 2019 over the United Arab Emirates (UAE). The majority of scientific flights targeted summertime convection along the eastern Al Hajar Mountains bordering Oman, while one flight sampled non-orographic cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2021-08, Vol.21 (16), p.12543-12560
Hauptverfasser: Wehbe, Youssef, Tessendorf, Sarah A, Weeks, Courtney, Bruintjes, Roelof, Xue, Lulin, Rasmussen, Roy, Lawson, Paul, Woods, Sarah, Temimi, Marouane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aerosol and cloud microphysical measurements were collected by a research aircraft during August 2019 over the United Arab Emirates (UAE). The majority of scientific flights targeted summertime convection along the eastern Al Hajar Mountains bordering Oman, while one flight sampled non-orographic clouds over the western UAE near the Saudi Arabian border. In this work, we study the evolution of growing cloud turrets from cloud base (9 ∘C) up to the capping inversion level (−12 ∘C) using coincident cloud particle imagery and particle size distributions from cloud cores under different forcing. Results demonstrate the active role of background dust and pollution as cloud condensation nuclei (CCN) with the onset of their deliquescence in the subcloud region. Subcloud aerosol sizes are shown to extend from submicron to 100 µm sizes, with higher concentrations of ultra-giant CCN (d>10 µm) from local sources closer to the Saudi border, compared with the eastern orographic region where smaller CCN are observed. Despite the presence of ultra-giant CCN from dust and pollution in both regions, an active collision–coalescence (C–C) process is not observed within the limited depths of warm cloud (
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-21-12543-2021