Bioremediation of Cr(VI) using indigenous bacterial strains isolated from a common industrial effluent treatment plant in Vishakhapatnam

The present study focuses on removing hexavalent chromium (Cr(VI)) using indigenous metal-resistant bacterial strains isolated from a common industrial effluent treatment plant, a contaminated site in Vishakhapatnam. Three high metal-resistant isolates were screened by growing them in nutrient agar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2023-12, Vol.88 (11), p.2889-2904
Hauptverfasser: Padma, Seragadam, Srinivas, Badri, Ghanta, Kartik Chandra, Dutta, Susmita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study focuses on removing hexavalent chromium (Cr(VI)) using indigenous metal-resistant bacterial strains isolated from a common industrial effluent treatment plant, a contaminated site in Vishakhapatnam. Three high metal-resistant isolates were screened by growing them in nutrient agar media containing different Cr(VI) concentrations for 24 h at 35 ± 2 °C. The three strains' minimum inhibitory concentrations of Cr(VI) were examined at neutral pH and 35 ± 2 °C temperature. Morphological, biochemical, and molecular characterizations were carried out, and the strains were identified as Bacillus subtilis NITSP1, Rhizobium pusense NITSP2, and Pseudomonas aeruginosa NITSP3. Elemental composition and functional group analysis of the native and metal-loaded cells were done using energy-dispersive spectroscopy and Fourier-transform infrared spectroscopy, respectively. The operating conditions were optimized using a one-factor-at-a-time analysis. When compared with three bacterial isolates, maximum Cr(VI) removal (80.194 ± 4.0%) was observed with Bacillus subtilis NITSP1 with an initial Cr(VI) concentration of 60 mg/L, pH 7.0, an inoculum size of 2% (v/v), and an incubation period of 24 h. The logistic model was used to predict the variation of biomass growth with time. The present study can be extended to remove heavy metals from industrial wastewater in an environmental-friendly manner.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2023.358