Mechanical properties, degree of sclerotisation and elemental composition of the gastric mill in the red swamp crayfish Procambarus clarkii (Decapoda, Crustacea)

The gastric mill of Decapoda is a unique feature, which comprises teeth, stabilizing ossicles, and particle sorting setae. Involved in the fragmentation and sorting of the food, this structure serves as interface between the organism and its environment. As material properties complement morphology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-10, Vol.12 (1), p.17799-19, Article 17799
Hauptverfasser: Krings, Wencke, Brütt, Jan-Ole, Gorb, Stanislav N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The gastric mill of Decapoda is a unique feature, which comprises teeth, stabilizing ossicles, and particle sorting setae. Involved in the fragmentation and sorting of the food, this structure serves as interface between the organism and its environment. As material properties complement morphology and hold information about function and trophic preferences, we here provide a basis for more comparative research on gastric mills. For gastric mill components of the adult red swamp crayfish Procambarus clarkii , we studied (a) the micro-structure via scanning electron microscopy, (b) the elemental composition by energy-dispersive X-ray spectroscopy, (c) the heterogeneities in material properties and degree of tanning (autofluorescence) by confocal laser scanning microscopy, and (d) the mechanical properties hardness and elasticity by nanoindentation technique. The morphology and micro-structure were previously described for this species, but the mechanical properties and the autofluorescence were not studied before. As epicuticle and exocuticle could be analyzed individually, material property gradients, with values decreasing from the interacting surface towards interior, could be determined. Finally, we were able to relate the mechanical property data with the elemental composition and the degree of tanning. We found that the epicuticle of the teeth is among the hardest and stiffest biological materials in invertebrates due to the incorporations of high proportions of silicon.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-22724-w