Conformal invariance of (0, 2) sigma models on Calabi-Yau manifolds
A bstract Long ago, Nemeschansky and Sen demonstrated that the Ricci-flat metric on a Calabi-Yau manifold could be corrected, order by order in perturbation theory, to produce a conformally invariant (2, 2) nonlinear sigma model. Here we extend this result to (0, 2) sigma models for stable holomorph...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2018-03, Vol.2018 (3), p.1-14, Article 90 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
Long ago, Nemeschansky and Sen demonstrated that the Ricci-flat metric on a Calabi-Yau manifold could be corrected, order by order in perturbation theory, to produce a conformally invariant (2, 2) nonlinear sigma model. Here we extend this result to (0, 2) sigma models for stable holomorphic vector bundles over Calabi-Yaus. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP03(2018)090 |