Running vacuum versus holographic dark energy: a cosmographic comparison

We perform a comparative study of different types of dynamical dark energy models (DDEs) using the cosmographic method. Among the models being examined herein we have the Running Vacuum models (RVMs), which have demonstrated considerable ability to fit the overall cosmological data at a level compar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2022-08, Vol.82 (8), p.1-16, Article 765
Hauptverfasser: Rezaei, Mehdi, Peracaula, Joan Solà
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We perform a comparative study of different types of dynamical dark energy models (DDEs) using the cosmographic method. Among the models being examined herein we have the Running Vacuum models (RVMs), which have demonstrated considerable ability to fit the overall cosmological data at a level comparable to the standard cosmological model, Λ CDM, and capable of alleviating the σ 8 and H 0 tensions. At the same time we address a variety of Holographic dark energy models (HDEs) with different options for the time (redshift)-varying model parameter c = c ( z ) . We deal with the HDEs under the double assumption of fixed and evolving holographic length scale and assess which one is better. Both types of DDEs (RVMs and HDEs) are confronted with the most robust cosmographic data available, namely the Pantheon sample of supernovae data (SnIa), the baryonic acoustic oscillations data (BAOs) extracted from measurement of the power spectrum and bispectrum of the BOSS data release, and the cosmic chronometer measurements of the Hubble rate (CCHs) at different redshifts obtained from spectroscopic observations of passively evolving galaxies. Using these data samples we assess the viability of the mentioned DDEs and compare them with the concordance Λ CDM model. From our cosmographic analysis we conclude that the RVMs fare comparably well to the Λ CDM, a fact which adds up more credit to their sound phenomenological status. In contrast, while some of the HDEs are favored using the current Hubble horizon as fixed holographic length, they become highly unfavoured in the more realistic case when the holographic length is dynamical and evolves as the Hubble horizon.
ISSN:1434-6052
1434-6044
1434-6052
DOI:10.1140/epjc/s10052-022-10653-x