Modelling self-similar parabolic pulses in optical fibres with a neural network
We expand our previous analysis of nonlinear pulse shaping in optical fibres using machine learning [Opt. Laser Technol., 131 (2020) 106439] to the case of pulse propagation in the presence of gain/loss, with a special focus on the generation of self-similar parabolic pulses. We use a supervised fee...
Gespeichert in:
Veröffentlicht in: | Results in optics 2021-05, Vol.3, p.100066, Article 100066 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We expand our previous analysis of nonlinear pulse shaping in optical fibres using machine learning [Opt. Laser Technol., 131 (2020) 106439] to the case of pulse propagation in the presence of gain/loss, with a special focus on the generation of self-similar parabolic pulses. We use a supervised feedforward neural network paradigm to solve the direct and inverse problems relating to the pulse shaping, bypassing the need for direct numerical solution of the governing propagation model. |
---|---|
ISSN: | 2666-9501 2666-9501 |
DOI: | 10.1016/j.rio.2021.100066 |